civil engineering

Leonhard Euler developed the theory explaining the buckling of columns

Civil engineering




The Burj Khalifa, the world's tallest skyscraper, 828 metres (2,717 ft) tall


Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works like roads, bridges, canals, dams, airports, sewerage systems, pipelines and railways. Civil engineering is traditionally broken into a number of sub-disciplines. It is the second-oldest engineering discipline after military engineering, and it is defined to distinguish non-military engineering from military engineering.Civil engineering takes place in the public sector from municipal through to national governments, and in the private sector from individual homeowners through to international companies.

History of the civil engineering profession

Leonhard Euler developed the theory explaining the buckling of columns

Engineering has been an aspect of life since the beginnings of human existence. The earliest practice of civil engineering may have commenced between 4000 and 2000 BC in ancient Egypt, the Indus Valley Civilization, and Mesopotamia (ancient Iraq) when humans started to abandon a nomadic existence, creating a need for the construction of shelter. During this time, transportation became increasingly important leading to the development of the wheel and sailing.

Until modern times there was no clear distinction between civil engineering and architecture, and the term engineer and architect were mainly geographical variations referring to the same occupation, and often used interchangeably. The construction of pyramids in Egypt (circa 2700–2500 BC) were some of the first instances of large structure constructions. Other ancient historic civil engineering constructions include the Qanat water management system (the oldest is older than 3000 years and longer than 71 km,) the Parthenon by Iktinos in Ancient Greece (447–438 BC), the Appian Way by Roman engineers (c. 312 BC), the Great Wall of China by General Meng T'ien under orders from Ch'in Emperor Shih Huang Ti (c. 220 BC) and the stupas constructed in ancient Sri Lanka like the Jetavanaramaya and the extensive irrigation works in Anuradhapura. The Romans developed civil structures throughout their empire, including especially aqueducts, insulae, harbors, bridges, dams and roads.

In the 18th century, the term civil engineering was coined to incorporate all things civilian as opposed to military engineering.The first self-proclaimed civil engineer was John Smeaton, who constructed the Eddystone Lighthouse. In 1771 Smeaton and some of his colleagues formed the Smeatonian Society of Civil Engineers, a group of leaders of the profession who met informally over dinner. Though there was evidence of some technical meetings, it was little more than a social society.

In 1818 the Institution of Civil Engineers was founded in London, and in 1820 the eminent engineer Thomas Telford became its first president. The institution received a Royal Charter in 1828, formally recognising civil engineering as a profession. Its charter defined civil engineering as:

the art of directing the great sources of power in nature for the use and convenience of man, as the means of production and of traffic in states, both for external and internal trade, as applied in the construction of roads, bridges, aqueducts, canals, river navigation and docks for internal intercourse and exchange, and in the construction of ports, harbours, moles, breakwaters and lighthouses, and in the art of navigation by artificial power for the purposes of commerce, and in the construction and application of machinery, and in the drainage of cities and towns


History of civil engineering education
John Smeaton, the "father of civil engineering"


Civil engineering is the application of physical and scientific principles for solving the problems of society, and its history is intricately linked to advances in understanding of physics and mathematics throughout history. Because civil engineering is a wide-ranging profession, including several specialized sub-disciplines, its history is linked to knowledge of structures, materials science, geography, geology, soils, hydrology, environment, mechanics and other fields.


Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. Knowledge was retained in guilds and seldom supplanted by advances. Structures, roads and infrastructure that existed were repetitive, and increases in scale were incremental.

One of the earliest examples of a scientific approach to physical and mathematical problems applicable to civil engineering is the work of Archimedes in the 3rd century BC, including Archimedes Principle, which underpins our understanding of buoyancy, and practical solutions such as Archimedes' screw. Brahmagupta, an Indian mathematician, used arithmetic in the 7th century AD, based on Hindu-Arabic numerals, for excavation (volume) computations

The civil engineer

Surveying students with professor at the Helsinki University of Technology in the late 19th century.

Education and licensure


Civil engineers typically possess an academic degree in civil engineering. The length of study is three to five years, and the completed degree is designated as a bachelor of engineering, or a bachelor of science in engineering. The curriculum generally includes classes in physics, mathematics, project management, design and specific topics in civil engineering. After taking basic courses in most sub-disciplines of civil engineering, they move onto specialize in one or more sub-disciplines at advanced levels. While an undergraduate degree (BEng/BSc) normally provides successful students with industry-accredited qualification, some academic institutions offer post-graduate degrees (MEng/MSc), which allow students to further specialize in their particular area of interest.

In most countries, a bachelor's degree in engineering represents the first step towards professional certification, and a professional body certifies the degree program. After completing a certified degree program, the engineer must satisfy a range of requirements (including work experience and exam requirements) before being certified. Once certified, the engineer is designated as a professional engineer (in the United States, Canada and South Africa), a chartered engineer (in most Commonwealth countries), a chartered professional engineer (in Australia and New Zealand), or a European engineer (in most countries of the European Union). There are international agreements between relevant professional bodies to allow engineers to practice across national borders.

The benefits of certification vary depending upon location. For example, in the United States and Canada, "only a licensed professional engineer may prepare, sign and seal, and submit engineering plans and drawings to a public authority for approval, or seal engineering work for public and private clients." This requirement is enforced under provincial law such as the Engineers Act in Quebec.

No such legislation has been enacted in other countries including the United Kingdom. In Australia, state licensing of engineers is limited to the state of Queensland. Almost all certifying bodies maintain a code of ethics which all members must abide by.

Engineers must obey contract law in their contractual relationships with other parties. In cases where an engineer's work fails, he may be subject to the law of tort of negligence, and in extreme cases, criminal charges.An engineer's work must also comply with numerous other rules and regulations such as building codes and environmental law.









Previous
Next Post »